
www.elsevier.com/locate/yjbin

Journal of Biomedical Informatics 37 (2004) 205–219
Methodological Review

Bioinformatics integration and agent technology

K.A. Karasavvas,a,* R. Baldock,b and A. Burgera,b

a Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
b Human Genetics Unit, Medical Research Council, Edinburgh EH4 2XU, UK

Received 10 December 2003

Available online 8 May 2004
Abstract

Vast amounts of life sciences data are scattered around the world in the form of a variety of heterogeneous data sources. The need

to be able to co-relate relevant information is fundamental to increase the overall knowledge and understanding of a specific subject.

Bioinformaticians aspire to find ways to integrate biological data sources for this purpose and system integration is a very important

research topic. The purpose of this paper is to provide an overview of important integration issues that should be considered when

designing a bioinformatics integration system. The currently prevailing approach for integration is presented with examples of

bioinformatics information systems together with their main characteristics. Here, we introduce agent technology and we argue why

it provides an appropriate solution for designing bioinformatics integration systems.

� 2004 Elsevier Inc. All rights reserved.

Keywords: Bioinformatics; System integration; Agent technology
1. Bioinformatics system integration

System integration is a challenging research topic,

important for most application domains. This is espe-

cially true in bioinformatics systems because of the in-

herent complexity of the domain [1,2] in which: (a) most

rules have exceptions; (b) there is a rich variety in data,

from one-dimensional genome or protein sequences to

three-dimensional models of embryos—3D images de-
manding vast amounts of storage capacity; (c) complex

relationships between structures; (d) variation in cura-

tion and quality control standards [3]; (e) multiple

sources of similar data, in some cases interpreted ver-

sions of the same data [3,4]; and (f) uncertainty, natural

variation, experimental error, interpretation error,

computational error. In this section we will introduce

principal aspects of system integration with a focus on
bioinformatics systems. Issues like heterogeneity, feder-

ated systems, and ‘wrapping’ legacy systems will be
* Corresponding author. Fax: +44-131-451-3249.

E-mail addresses: ceekk@macs.hw.ac.uk (K.A. Karasavvas),

R.Baldock@hgu.mrc.ac.uk (R. Baldock), A.Burger@hgu.mrc.ac.uk

(A. Burger).

1532-0464/$ - see front matter � 2004 Elsevier Inc. All rights reserved.

doi:10.1016/j.jbi.2004.04.003
discussed with examples of bioinformatics integration
systems.

1.1. Fundamental aspects of integration

The main goal of integration is to provide mecha-

nisms that can unify a number of (computer) systems.

By systems we mainly refer to data sources, like data-

bases, web servers, and so on. Instead of having to
manually request (query) data from various resources

and then combine the results to get more useful infor-

mation, one would like an integrated system that can

automate such a process. We can describe such func-

tionality as a number of steps: (a) the user makes a re-

quest (query) to the integrated system; such a request

may require more than one data source to be satisfied;

(b) the integration system processes the request and
decides how to split it into sub-requests specific to data

sources; (c) the sub-requests are made and all individual

results are returned to the integration system; and (d)

the results are combined to a coherent answer which

is returned to the user. Three important aspects of sys-

tem integration are distribution, autonomy and hetero-

geneity [5,6].

mail to: ceekk@macs.hw.ac.uk

206 K.A. Karasavvas et al. / Journal of Biomedical Informatics 37 (2004) 205–219
Distribution. In most cases data sources are distri-
buted. The user need not know the location and other

details of each available resource. Such details are usu-

ally transparent and handled automatically by the in-

tegrated system. Distribution should preferably be

hidden from the user.

Autonomy. It is very often the case that integrated

resources belong to different organisations or research

groups. While most people are willing to share their
data, they do not want to lose control over decisions for

their data source. Thus, the developers of an integrated

system do not usually have any control over the

underlying systems, which are autonomous.

Heterogeneity. In an open and diverse environment it

is very common that some or all of the data sources are

different from each other. Integrating heterogeneous

systems involves extra work so as to ensure the correct
relationship of data between the information systems.

1.2. Heterogeneity

Heterogeneity of data sources has been the focus of

many studies in the past [5–9]. While there are some

differences in how each study analyses heterogeneity we

can identify two major categories:
Technical. Such differences can occur because of dif-

ferent hardware platforms, operating systems, database

management systems (query languages, data models),

access protocols, transport formats, and programming

languages.

Semantic. Conceptual differences occur in the data

models/schemas1 of the data sources [10,11], i.e., the

organisation of data and the relationships between such
data. Typical examples are synonyms—when attributes

of two schemas have different names but refer to the

same concept—and homonyms—when attributes of two

schemas have the same name but refer to different

concepts.

In general, technical heterogeneity is easier to resolve.

The Java programming language can be used to deal

with different hardware and operating systems, common
query languages, like SQL, could be used to deal with

database management systems, Web technologies, like

HTTP and XML, can be used for common access and

formatting, respectively, and CORBA [12] to deal

(among others) with different programming languages.

An important and challenging aspect is to integrate

the schemas of the data sources. Different schemas and

data models can introduce both technical, e.g., rela-
tional versus object models, and semantic heterogeneity.

To bridge schema heterogeneity we usually define a
1 When we talk about the schema of a data source we refer to the

conceptual data model—the conceptual relationships between the data.

A schema is expressed in the data model of each particular data source

[6].
common schema expressed in a common data model
(CDM). Each local data model is mapped to the CDM

thereby resolving semantic heterogeneity. Integrated

systems that aim to create a CDM and a federated

schema are called federated systems [5,6].

1.3. Federated systems

Federated systems can be classified in terms of their
degree of federation and instantiation [6,13]. The first

refers to how autonomous—independent from the inte-

gration system—the data sources are; autonomy in-

directly influences the precision of the schema

integration. We can have a tight federation which typi-

cally involves non-autonomous data sources—poten-

tially very precise matching of the local schemas—, and

capability to allow reliable read–write access to the
integrated system. Alternatively, a loose federation

typically means completely autonomous data sources—

constraint matching of the local schemas—, and only

read-only reliable access to the data sources. Usually,

when dealing with an open environment with a large

number of data sources, a loose federation is the pre-

ferred option because it is easier to extend [14].

The second, the degree of instantiation, refers to
where the physical data reside. We can have a virtual

federation which means that the actual data reside in the

respective data sources, and the integration system

provides just a unified view of these data sources. Or a

materialised federation—also called warehousing—in

which the integrated system consists of a global physical

repository which includes all the data sources’ data.

Although a materialised solution is more efficient com-
putationally, in general the virtual approach is preferred

as it does not involve data replication—which introduces

data update and synchronisation problems—and it is

much easier to maintain [13].

1.4. Legacy systems and wrappers

Typically, each data source has a query language (or
sometimes an API) that allows users to request data

from that resource. This query language is designed

with the data model in mind so as to achieve a more

natural mapping between the two. To deal with query

language heterogeneity, integration systems use a glo-

bal query language—also called internal or common

query language (CQL). This language is used as the

common language between the heterogeneous data
sources and it should be designed according to the

common data model used, i.e., facilitate the appropriate

expressiveness.

With a query formulated in the CQL the integrated

system could use the federated schema to decompose,

usually referred to as query decomposition and planning,

the initial query to sub-queries that could be answered

K.A. Karasavvas et al. / Journal of Biomedical Informatics 37 (2004) 205–219 207
by individual resources. The sub-query, expressed using
the CQL, is then translated to the data source-specific

language. This task is accomplished by using software

modules called wrappers. Wrappers encapsulate or

‘wrap’ the functionality of existing legacy systems. They

are responsible for converting a request formulated in

the CQL to the specific query language used by a data

source and vice versa. As can be seen in Fig. 1 wrappers

can make any kind of data appear homogeneous to the
integration system that only ‘understands’ the CQL.

1.5. Mediation and bioinformatics integration systems

The previous discussion of integration implicitly de-

scribed one of the most common integration approaches

in bioinformatics: mediation [15,16]. Mediators were

introduced with the argument that they ‘‘simplify, ab-
stract, reduce, merge, and explain data’’ [15] and their
Fig. 1. Example of wrappers translating the common

Fig. 2. Overview of integ
primary purpose is seamless integration of heteroge-
neous data sources. A general definition given by Wie-

derhold [15] is: ‘‘A Mediator is a software module that

exploits encoded knowledge about certain sets or sub-

sets of data to create information for a higher layer of

applications.’’ Mediation is an abstract architecture that

conceptualises integration. In our integration overview

we presented a more practical view of the integration

procedure that is summarised in Fig. 2.
We can now describe the integration steps in more

detail:

• The user provides a query formulated in the common

query language to the integration system—media-

tor(s).

• The integration system applies the query to the com-

mon data model. The query decomposition and plan-

ning module (part of the mediators) decomposes the
initial query into sub-queries, again formulated in
language (CQL) to the local query languages.

ration procedure.

208 K.A. Karasavvas et al. / Journal of Biomedical Informatics 37 (2004) 205–219
the common query language. The sub-queries are
passed to the appropriate data sources via their

respective wrappers.

• Each wrapper translates the sub-queries to the local

query language used by the data source and then

translates the results back to the CQL.

• The results are then returned to the integration sys-

tem where they are combined to a coherent result,

which is returned back to the user.
Systems that do not provide a conceptual model in

their CDM, or not a CDM at all, cannot provide inte-

gration and location transparency. That means that the

user has to define how the data sources’ data will be

combined and which data sources should be used; we

refer to such systems as non-transparent.

Bioinformatics integration systems follow the proce-

dure illustrated in Fig. 2 and their functionality can be
generally described with the integration steps mentioned

above. Table 1 provides an overview of these systems,

presenting aspects of their federation, their common

query language (CQL) and common data model (CDM)

as well as whether they provide total transparency to the

users or not. Some of the systems in Table 1 provide

potential variations of the mediation approach to

integration and these are briefly described below.
In BioKleisli [17], when users formulate queries in the

Collection Programming Language (CPL) [18] they have

to provide information of which data sources will be

used and how. Thus, the actual integration of the re-

source’s data is manual and takes place while formu-

lating the query. BioKleisli does not provide a CDM.

The query itself has the integration and location details,

which means that integration and distribution are not
transparent to the user. Wrappers—called Data Drivers

in BioKleisli—have been developed for many data

sources, including GenBank, EMBL, DDBJ, GSDB,

GDB, and BLAST.

TAMBIS [19] uses GRAIL [20], a description logic

[21], to capture the ‘Concept Model’ (CDM). The lo-

cation details and semantic heterogeneity are captured

in the ‘Source Model.’ A user-interface driven by the
‘Concept Model’ allows users to construct queries in
Table 1

Bioinformatics integration systems

Integration

system

Federation Instantiation CQL

BioKleisli Loose Virtual CPL

TAMBIS Loose Virtual GRAIL

K2 Loose Virtual OQL

OPM Tools Loose Virtual OPM*QL

P/FDM Loose Virtual PROLOG, D

SRS Loose Virtual & Materialised SRS-QL

IGD Tight Materialised COQL

DiscoveryLink Loose Virtual SQL
GRAIL. Then, the system translates these queries, with
the help of the ‘Source Model,’ into a CPL query. Fi-

nally, the CPL query can be executed using a BioKleisli-

like system, which in effect will act as a (global) wrapper.

K2 [22] takes an object-oriented approach to media-

tion. Its CDM is a hybrid of ODMG-standards [23]

Object Definition Language (ODL)—to define data ob-

jects and their relationships—and Object Query Lan-

guage (OQL)—to define the location details of the data.
Additionally, OQL is used as the common query lan-

guage. K2 aims to provide the tools needed to build an

integration system, using the mediation approach and

the object model. Some examples of data sources con-

nected to K2 are SRS, KEGG, BLAST, Genomes,

USPTO, Delphion, PubMed, and MMDB.

‘OPM Tools’ [24] provide tools for mediation with

another object model. Object-Protocol Model (OPM)
and OPM�QL are similar to ODL and OQL, respec-

tively. ‘OPM Tools’ have been used to create a database

federation that includes GDB, GSDB, and GenBank.

P/FDM [25] uses PROLOG as a CQL to access da-

tabases using the Functional Data Model (FDM). In

addition, a prototype system was built to accept queries

in a higher-level language, called Daplex—a language

similar to OQL. A query in Daplex can generate PRO-
LOG code to access databases using the FDM, generate

SRS-QL code to access SRS, or both.

The Sequence Retrieval System (SRS) [26] combines

both virtual and materialised federation. It treats data

sources as a series of entries that are defined in the Ic-

arus language. Indices of the entries of the data sources

are kept in a global repository, while the actual data are

kept in their respective data sources. Note that with
Icarus one can only represent the entries of the data

sources; there is no conceptual model (schema) and like

BioKleisli the integration and location details are not

transparent to the user.

The Integrated Genomic Database (IGD) [27] uses

the Concise Object Query Language (COQL) and an

Extended Entity Relation (EER) model for the CQL

and CDM, respectively. One of the few systems that uses
materialised federation, IGD, integrates more than a
CDM Transparency

— No

‘Concept Model’ & ‘Source Model’ Yes

K2MDL Yes

OPM Yes

aplex FDM Yes

Icarus No

EER Yes

SQL DDL Yes

2 In contrast to what we discussed in previous sections.

K.A. Karasavvas et al. / Journal of Biomedical Informatics 37 (2004) 205–219 209
dozen data sources quite successfully, although its
extensibility has been questioned [13].

Finally, DiscoveryLink [28] from IBM uses SQL for

a CQL using wrappers to map non-relational data

(flat text files, object model, etc.) to a relational

model. Wrappers provide a description of the data

source that they represent using an SQL Data Defi-

nition Language (DDL)—the CDM. Unfortunately,

DiscoveryLink has the accepted disadvantage of only
being able to handle limited semantic heterogeneity.

Having said that, DiscoveryLink is based on well-

tested IBM technologies like DataJoiner and DB2

Universal Database, as well as non-relational wrapper

technology from the Garlic project [29], offering an

industrial strength solution.

All of the above bioinformatics integration systems

follow—each to a different extent—the system integra-
tion procedure that is prevalent to computer science; by

providing a CDM and a CQL as an intermediate layer,

an integration system can dynamically answer any

queries related to the integrated data sources—as

described by the CDM.

1.6. Confidence in results’ quality

In previous sections, we have seen that integration

could be either transparent to the user or not. Trans-

parency avoids the need for the user to be an expert in

bioinformatics systems and databases; i.e., to know

which data sources contain the information needed and

how the resulting data should be combined to reach a

final result. A transparent system incorporates integra-

tion reasoning, put there by bioinformatics experts, and
automates the integration procedure.

However in many cases there is more than one way

to solve a particular problem. For example, what

scoring matrix should be used for sequence compari-

son, and what database should be used to find tissue-

specific gene expression data. Such decisions are not

straightforward, and in most cases it cannot be part of

the integration logic because it really depends on the
user: what experiment (s)he is involved with, how im-

portant are the specific data to obtaining the final re-

sult, and so on.

Thus, it would be convenient for the user to be able

to intervene at the level of integration logic. However,

allowing the user to intervene limits the system’s

transparency. Consequently, we have identified the

need for adjustable transparency instead of the fixed
transparent or non-transparent. Although, integration

would be transparent the user should be able to adjust

the level of transparency according to his/her needs.

Work on this area is limited in bioinformatics inte-

gration systems, and we believe it is an important issue

that should be dealt with to build large and more

content-rich systems.
1.7. Semantic web services, semantic grid, and integration

Many bioinformatics data sources are becoming

publicly available through the Internet and more re-

cently as Web services. This has the benefits that it en-

ables developers to publish, as well as locate services on

the Web, so that anyone can access them in a uniform

way. However, as with data integration, developers

could not be certain of the purpose (semantics) of the
service, e.g., does the concept ‘price’ include VAT or

not? The Semantic Web have been developed to provide

a solution. The goal is to provide common meaning

between concepts used in Web pages and services. To

this end: (a) a general-purpose data format has been

designed (XML—see [30] for using XML in bioinfor-

matics data integration); (b) it was extended to allow for

metadata (RDF); (c) basic semantics for the data
structures and values allowed have been specified (RDF

Schemas), and recently; (d) fully developed ontology

languages have been defined, e.g., the Web Ontology

Language (OWL).

An ontology [31,32] is a group of concept definitions

that describe an application domain. As mentioned,

knowledge terms can have a different meaning between

different application domains or even between different
researchers in the same domain (a representative example

in biology is the different conceptualisations used for

‘gene’ [2]). That is why we need common ontologies.

Disparate researchers and/or systems can commit to a

common ontology to accomplish the same understanding

for a set of concepts.

The very large-scale distributed computing and data

required of particle physics coupled with the need to go
beyond the limited stateless and insecure Web Service

technology has led to the development of the Grid [33].

The goal was to inter-connect a large amount of com-

puting resources at a national or even world-wide scale

to build ‘cheap’ virtual supercomputers. Other research

communities, such as biology, earth science, and as-

tronomy, have expressed interest in the Grid. This

change of focus made other extensions necessary; for
example, to resolve heterogeneity of the disparate re-

sources and to incorporate ontologies, led to what is

now called Semantic Grid. There is now a large-scale

effort to develop Grid standards and technology under

the OGSA/OGSI [34] heading with many national and

international Grids now under development.

In the bioinformatics literature, in the context of the

Semantic Web and Grid, ‘system integration’ is also
used in a more general sense,2 i.e., that of mustering a

large number of data sources and providing a frame-

work for their discovery and execution. Two such no-

table systems are BioMOBY [35]—for bioinformatics

3 From now on, when we talk about agents we will always mean

agents that are part of a multi-agent system. Similarly, when we talk

about an agent system we will mean a multi-agent system.

210 K.A. Karasavvas et al. / Journal of Biomedical Informatics 37 (2004) 205–219
Web Services—and myGRID [36]—for a bioinformatics
Semantic Grid.

BioMOBY describes bioinformatics services as Web

Services. It provides a language to describe biological

services in terms of their inputs and outputs, as well as a

central registry, called ‘MOBY Central,’ to enable

service registration and discovery.

MyGRID provides similar functionality and is based

on the Open Grid Services Architecture (OGSA) [34]. In
addition, it offers the users the ability to use or create

their own workflows. A workflow is a sequence of ser-

vices executed in the correct order that combined can

provide higher-level services. Workflows can be thought

of as pre-generated static plans, as opposed to the

(query) plans generated dynamically by mediators.

1.8. Investigating agent technology

Because of the the huge diversity and data volume in

the biology domain there already exists a significant

amount of ontologies [37,38]. Many projects and con-

ferences have been dedicated to further work on this area

and in 1998 a consortium was formed, comprising col-

laborations between many bioinformatics data sources’

curators, called Gene Ontology (GO) [39].
Agent technology is a rapidly evolving interdisci-

plinary field in computer science that emphasises the use

of autonomous software entities with the ability to in-

teroperate with other such software entities, in a uni-

form and standardised way. Because semantic

heterogeneity is a fundamental part of interoperability,

agent systems used ontologies from the beginning. In the

following sections we introduce agent technology and
argue that it is appropriate for bioinformatics systems

integration.

There are two primary reasons why agent systems

could be ideal. Firstly, biology’s ontological work could

exploit the potential of agent technology, in relation to

semantic heterogeneity, more easily. Secondly, it has

been argued [40] that ‘‘agent-oriented approaches are

well suited for developing complex, distributed sys-
tems,’’ which applies to bioinformatics integration sys-

tems. Agent technology has been successfully applied in

the past to system integration [29,41–43]. However, in

bioinformatics systems it has mainly been used for en-

hanced automation [44–49] and thus far only a couple of

bioinformatics integration systems are based on agent

technology [50,51], and even these do not provide ade-

quate arguments for their use and applicability. In the
next section, we will present basic aspects of agent

technology. The aim is for the reader to get acquainted

with the technology so that (s)he can appreciate the

benefits that agents could offer to bioinformatics inte-

gration systems. After each section describes some as-

pect of agent technology we will discuss the implications

of this aspect to integrating bioinformatics systems.
2. Agent technology

Software agents aim to provide enhanced automation

to information systems. Their main focus is to perform

certain tasks on behalf of the user. The Oxford English

dictionary defines the word agent as ‘‘a person who acts

for another in business, politics, etc. (estate agent; in-

surance agent).’’ However, in computer science, there is

no consensus in the research community about the
definition of an agent. And there may not be one in the

future either, which was also the case with other terms

like object or artificial intelligence (AI).

Despite the minor confusion, the role of agents in

computer science is becoming clearer with time. And

although a universal definition might never be accepted,

the role, use, advantages, and disadvantages are be-

coming more accepted and established—similar to AI
and object-oriented programming.

Agent technology has its roots in multiple research

areas including distributed systems, AI and social (e.g.,

agent organisations and communication) and economic

(e.g., auction protocols) sciences. Each individual re-

searcher defines agents according to his/her background

and perspective and that creates important diversifica-

tion to the definitions. A large number of agent defini-
tions can be found in the literature, Franklin and

Graesser [52] provide a review, and reach yet another

definition. While, we will not go into the debate of which

definition is better, we can notice that the common

characteristic attributed to an agent is its autonomy—its

ability to exercise control over its internal state and

actions without direct human or other intervention.

Some other agent properties can be seen in Table 2.
These properties can be used to classify agent systems.

Two well-known taxonomies are Nwana’s [53] and

Franklin and Graesser’s [52].

Working in isolation makes software agents depend

only on some kind of user feedback to obtain new input.

The ability to exchange information with other agents

enables them to work together—sharing their knowl-

edge—to achieve a common goal. One that no single
agent could solve by itself. Such systems with a number

of co-operating agents are called multi-agent systems

(MAS).

Agents3 that are part of a MAS need to possess an-

other property—except autonomy—that is considered

fundamental for such systems: communication. Proper

communication can be achieved by using a high-level

language independent of any computer hardware or
operating system. Such an Agent Communication Lan-

guage (ACL) can be thought of as the equivalent of

natural languages used by humans. In effect multi-agent

Table 2

Some agents’ properties

Property Description

Autonomous agents can exercise control over their

internal state and actions without direct

human or other interaction

Communicative are sociably able

Reactive respond in a timely fashion to their input

Pro-active are goal-oriented and take the initiative

where appropriate

Planning can plan their own actions

Persistent have temporally continuous state

Adaptive can learn and change their behaviour on the

basis of their previous experience

Mobile have the ability to transport themselves from

one machine to another

K.A. Karasavvas et al. / Journal of Biomedical Informatics 37 (2004) 205–219 211
systems try to simulate our society. Each agent takes a

particular role (task specialisation) and talks to its peers

when in need of a task that it is not capable of carrying

out by itself or to notify them that certain conditions

have changed.

Fig. 3 is a simple example of a MAS for accessing

biological data. The ‘User Agent’ is responsible for ac-
cepting human queries/input/preferences. As an example

we will use the query: ‘‘find mouse tissues that express

the input genes in a given developmental stage (e.g.,

Theiler stage).’’ The ‘User Agent’ then asks the ‘Tissues

Agent’ to find tissues (its role/specialty) providing a set

of genes, an organism and a developmental stage. The

‘Tissues Agent,’ in its part, consults appropriate

agents—capable to answer such a query, e.g., ‘GXD
Agent’ and ‘EMAGE Agent’—to acquire tissues from

the respective data sources, GXD [54] and EMAGE [55].

The results are received by the ‘Tissues Agent,’ which

merges all the tissues returned on the specified devel-

opmental stage. Then it returns the resulting set of tis-

sues to the ‘User Agent,’ which in turn presents them to

the user.

Central to agents’ functionality is a common com-
munication language, which enables them to co-operate.

ACLs are described below.

2.1. Agent communication languages

Communication between agents is modelled as the

exchange of declarative statements, typically based on

first-order predicate logic.
Fig. 3. A simple multi-agent system.
Continuing the parallelism that a MAS simulates a
society for agents, we can go further by examining lan-

guage. Linguists describe certain characteristics [56] of

natural languages, which can be considered as the dif-

ferent parts needed to properly describe a language.

These characteristics are phonetics, phonology, mor-

phology, lexis (words), semantics, syntax, and prag-

matics. The first three describe the oral aspects of

communication and thus we can ignore for our pur-
poses. The last four need to be retained. By including

lexis in the semantics we can use this sub-set of natural

language characteristics to describe a language for

agents. To be more precise it can be partitioned into

three layers:

Pragmatics. Specifies the way that an entity will ex-

press its needs or/and the effect that it wants to pass to

the receiver. This layer can be thought of as the speci-
fication for information exchange. It specifies the way

that two (or more) entities—agents—will communicate

and it comprises, among other things, sender, recipient,

and the content of the message. Pragmatics is referred to

as the Agent Communication Language or ACL. In

natural languages, pragmatics are implicit—the intent of

the speaker is inferred by his intonation and choice of

words—whilst with agents we need to be explicit using
specific verbs (speech acts [57,58]), which denote the

nature of the communication. Examples of such a

specification are FIPA ACL [59] in which speech acts

are called communicative acts, and KQML [60] in which

speech acts are called performatives.

Syntax. Used to structure the information that will be

sent (i.e., message content). The content of the message

contains words that are arranged according to a struc-
ture, defined by the syntax of the language. Examples of

such languages include FIPA SL [61], KIF [62] or

PROLOG [63].

Semantics. A correctly structured message content

consists of a number of words (lexis). However, these

words do not mean anything to computational entities

such as agents. They are just strings that make up a

larger string, the message. Semantics is used to give
meaning to these words. It ensures that the word is as-

sociated with the correct concept. By doing this we can

avoid inconsistencies such as having different words for

the same concept or one word for different concepts. A

group of concept definitions describing a specific do-

main is called an ontology. Semantics for ACLs can

comprise of multiple ontologies.

This layered approach helps us to work on each one
part of the language independently. For example we

could use a different syntax to describe the information

that we want to send, without needing to change the

pragmatics and semantics of the language. An example

of an ACL message—using the FIPA ACL specification

format—can be seen in Fig. 4. FIPA specifications pro-

vide both formal and informal definitions for all the

Fig. 4. An example of a FIPA message. AgentA informs AgentB that

gene ‘msx2’ is expressed in tissue ‘brain.’ The message is expressed in

‘PROLOG’ and the words used in the message comply with a bio-

logical ontology, ‘biology.’ That means that the receiver agent should

understand (or be able to learn/translate) the ‘PROLOG’ language and

the ‘biology’ ontology.

212 K.A. Karasavvas et al. / Journal of Biomedical Informatics 37 (2004) 205–219
communication terms used in the ACL messages ex-

changed, i.e., what are the speech acts (like ‘inform’),

what is their semantic meaning, what kind of expres-

siveness does a content language need to provide, and
so on.

2.2. ACLs and bioinformatics integration

Note that the exchange of information plays a central

role to a MAS; similarly to system integration. The

three-layered approach for communicating a message is

a big step towards resolving heterogeneity—which was
after all one of the main goals of MASs (see next

section). More specifically:

• a common ACL with a pre-specified content language

takes care of any potential technical heterogeneity as

it provides a common intermediate representation of

the exchanged data and

• a common ontology resolves any potential semantic

heterogeneity.
Additionally, as the purpose of an ACL is the com-

munication between agents, one can think of it as the

CQL of an integration system. That has important im-

plications in using agents for integration as they provide

a natural framework to achieve interoperability across

heterogeneous data and computational sources.

2.3. KSE and FIPA

Around 1990 the Defence Advanced Research

Projects Agency (DARPA), understanding the need

for information sharing, initiated the Knowledge

Sharing Effort (KSE) [64]. Its goal was to develop

techniques, methodologies, and software tools for

knowledge sharing and reuse at the design, imple-

mentation, and execution stages. At that time the term
‘agent’ did not exist—at least not with the meaning

that we attribute to it today. The KSE model was

intended for information exchange between databases,

expert systems and any other system that could be

viewed as a virtual knowledge base. Nonetheless, the

main focus was to share information, which implies
communication, which in turn implies a common
language for communication.

This led to the concept of an ACL, as we use it today,

and provided KQML [60] as the means of communi-

cating information. KSE first introduced the layered

approach of communication specifically by analogy to

natural languages. The KSE model consisted of KQML,

KIF [62], and Ontolingua [65] for the pragmatic,

syntactic, and semantic layers, respectively.
KQML and communicating agents became very

popular and soon there were a number of KQML

variants each addressing different aspects and short-

comings noticed during KQML’s usage. A number of

systems were developed from various academic and

commercial institutions. The popularity of KQML in-

creased even further but the diversity of the KQML

implementations made it impossible for different systems
to interoperate.

Major international companies realised that to pro-

mote agent technology to the market it was essential to

achieve interoperability between agent systems from

different vendors. For this reason, in 1996, these com-

panies joined to form a forum, the Foundation for In-

telligent Physical Agents (FIPA) [66], to discuss, design,

and provide specifications for agent technology. FIPA’s
mission statement is: ‘‘FIPA is an international organi-

zation that is dedicated to promoting the industry of

intelligent agents by openly developing specifications

supporting interoperability among agents and

agent-based applications.’’

FIPA took advantage of the experience provided

from all the KQML variants, identifying shortcomings

and dealing with them in its specifications. From the
early stages of the FIPA specifications, its designers

took great effort to provide unambiguous meaning for

the communication between agents—to maximise inter-

operability. For that reason FIPA provides both formal

and informal definitions for all the communication

terms used in the ACL messages exchanged. In addition,

similar definitions should exist for the language selected

for the message content.
That was an organised and centralised effort to create

standards with the appropriate commercial support. In

December 2002, FIPA have promoted a number of its

specifications to standards. With the number of com-

panies adopting the FIPA standards and the lack of

competing proposals in agent interoperability it seems

that FIPA succeeded in establishing its specifications as

the accepted international standards in MAS interop-
erability.

2.4. Standardisation and bioinformatics integration

It has been argued that a major part of the integra-

tion problem in bioinformatics is not technological but

sociological [2]. That is, in the absence of a standardised

Fig. 5. Example of multi-agent task sharing problem-solving.

4 Sub-task t2 does not need the partial result returned from sub-

task t1 and vice versa.

K.A. Karasavvas et al. / Journal of Biomedical Informatics 37 (2004) 205–219 213
interface it is very difficult for data source providers to
agree on a common way to provide services. Data

source providers prefer to be autonomous and usually

choose the more convenient methods to represent and

offer services rather than those that will help decrease

the heterogeneity issue. Of course, that is understand-

able as each provider will have different needs.

Ideally, each data source provider would provide an

interface that complies to a standard. It is here that the
agent interoperability standardisation efforts can be of

great use. By embracing the FIPA standards data pro-

viders can just implement a FIPA-compliant agent that

provides an interface to their data source. Automati-

cally, all other FIPA-compliant agents—that understand

the content language and ontologies used—will be able

to acquire the data offered.

2.5. Planning in multi-agent systems

Traditional centralised planning [67,68] is not enough

for a system that is naturally distributed. In this section

we will briefly describe the most common strategies in

distributed problem-solving.

One of the most classic and popular techniques to

distribute problem-solving is by task sharing, also called
task passing. The idea is straightforward. Each agent

tries to solve the given problem and when it reaches a

task that it does not know how to handle it requests help

from other agents. The basic steps in task sharing are

[69]:

Task decomposition. Generate a set of tasks to be

passed to other agents. This could generally involve

decomposing large tasks to sub-tasks that could be
tackled by different agents.

Task allocation. Request from the appropriate agents

to handle the sub-tasks.

Task accomplishment. The appropriate agents each

accomplish their sub-tasks—which may require further

task decomposition and allocation.

Result synthesis. When an agent completes a sub-task

that it was responsible, it sends the result back to the
requesting agent. The last will then synthesise the results

into a solution, which could be a sub-solution and thus,

in turn, needs to return the result to its requesting agent,

until we reach the initial (root) agent that will compose

an overall solution.

Notice how similar the above steps are to the typical

integration procedure described in Section 1.5—a query

is one type of task. Multi-agent task sharing is naturally
capable of dealing with mediator-like integration

problems.

In task sharing each agent makes a local plan (cen-

tralised planning) and then requests, in a way, other

agents to continue part of the planning—by solving sub-

tasks of the same problem. Hence, globally, the planning

process—and execution—is distributed and potentially in
parallel. In Fig. 5 each one of the agents depicted acts as

a planner—using traditional centralised planning—and

co-operates with the rest to achieve a common goal.
Thus, the overall plan is distributed among these agents

and the process of planning and execution is managed

dynamically and in an incremental way. Moreover,

when a task is decomposed to, say, t1 and t2 in ‘Agent 1’

and the two sub-tasks are independent of each other4

then they can also be executed in parallel—which implies

that the two agents that receive these sub-tasks, ‘Agents

2 and 3,’ respectively, will also plan (and execute) in
parallel. The agent that initially decomposed a task acts

as a synchronisation point for the parallel execution of

the sub-tasks, e.g., parallel sub-tasks t1 and t2 are syn-

chronised in ‘Agent 1.’

Other types of distributed planning [69,70, chapter

8] are: ‘Centralised Planning for Distributed Plans,’

‘Distributed Planning for Centralised Plans,’ and

‘Distributed Planning for Distributed Plans.’

2.6. Planning and integration

The steps of task sharing are very similar in structure

to the integration steps described in Section 1.5. If we

consider a task to be a query, as expressed in the CQL,

then the two procedures are almost identical. This

implies that significant synthesis is possible between
the technologies developed for these complementary

activities.

2.7. Adjustable autonomy

As previously discussed, it is widely accepted that one

of the primary characteristics of agency is autonomy.

One fundamental implication of this is that autonomous
agents have total control over their behaviour. Although

such control is usually helpful, because it indicates

automation, users find it difficult to completely trust

214 K.A. Karasavvas et al. / Journal of Biomedical Informatics 37 (2004) 205–219
autonomous agents [71] because of possible loss of
control, and feeling that the system limits their usual

behaviour constraining them from a free choice, e.g., a

user might prefer a specific method for solving a task but

the autonomous agent chooses another.

To remedy this lack of trust and to increase user

control, some systems provide support for adjustable

autonomy.

Adjustable autonomy means dynamically adjusting the level of

autonomy of an agent depending on the situation. For real-

world teaming between humans and autonomous agents, the

desired or optimal level of control may vary over time. Hence,

effective autonomous agents will support adjustable autonomy.

[72]

In other words, it is beneficial to have a mechanism

that enables control over the behaviour of a dynamic

and complex distributed system so as not to feel un-

certain about the quality of the results. This is a research

area that is attracting more attention as the MAS be-
come larger and more complex, which in turn causes

more work to be focused on the subject [73,74].

2.8. Adjustable transparency

As we have seen, in open bioinformatics integration

systems, the issue of the results’ quality (see Section

1.6) is even more important to the user. We already
suggested that we need a way to adjust the integration

system’s transparency. Adjustable autonomy has as a

result for the user to gain some control over the be-

haviour of the agents. If the agents’ functionality is to

integrate then adjusting their autonomy is exactly

what we need to better manage the system’s trans-

parency [50].

2.9. Agents and software engineering

Software engineers always try to find new methods to

make software design easier. Programming structures,

procedures, and objects are all part of the engineering

effort to abstract and conceptualise the software design

process. This aids the design and development of more

complex software systems. A successful demonstration
for handling complexity was object-oriented program-

ming. It has been argued that agent-based systems are a

step further to that end [40,75].

Techniques identified to handle software complexity

are decomposition, abstraction, and hierarchy [76]. We

will examine these techniques in relation to both objects

and agents.

Decomposition. We divide a large problem to smaller
problems that are more manageable. The designer can

then focus his attention on each sub-problem in relative

isolation. Both objects and agents are capable of de-

composition—they both facilitate for modular design

(but see ‘Abstraction’).
Abstraction. We define a simplified model of the
system so that we emphasise certain important aspects/

properties while suppressing others. The designer can

then focus his attention on a smaller number of system

characteristics, which are usually also high-level. Objects

represent a fine granularity of abstracting functionality,

though combined they can represent larger entities.

Agents abstract functionality of the system at a higher

level, that of roles. Each agent would be responsible for
a specific task (role) in the same way that individuals in a

company are responsible for a specific job.

Hierarchy. We define and manage the relationships

between the various problem-solving modules. This al-

lows the designer to combine the functionality of the

modules more effectively increasing the useful operation

of the modules, e.g., grouping modules and treating

them as a higher-level module. In the case of objects,
method invocation, is the only mechanism available for

describing the interactions that might take place. On the

other hand, agents facilitate the more advanced mech-

anism of an ACL which allows the different modules

(agents) a wide variety of interactions.

We can see that objects and agents have many simi-

larities—see [77, pp. 34–36] for a comparison. Agent

technology provides the designer with an intuitive ap-
proach to capture system functionality at a higher level,

while providing for a modular design and a more flexible

interaction mechanism. Although agents themselves will

possibly be designed using object-oriented techniques

anyway, they naturally provide a stronger notion for

organisation and co-operation, which in turn provides

solid foundations for dealing with complex distributed

systems.

2.10. Bioinformatics and complex distributed systems

Most bioinformatics integration systems follow the

virtual approach to federation. In addition, the biolog-

ical domain exhibits many complexities (as discussed in

Section 1), which imply that bioinformatics integration

systems can be considered as complex distributed sys-
tems. We have discussed the advantages that agents

have in software engineering, especially when we are

dealing with complex systems (see [40] for a detailed

discussion), thus arguing that agent technology would

be a good choice to deal with the intricacies of bioin-

formatics integration systems.
3. Agents and integration

Most agent integration systems use the mediation

approach [29,41–43]. An agent (or a number of agents)

acts as a mediator, usually called Mediator Agent (MA).

This agent has access to the CDM, which could be rep-

resented using any representation language—including

Fig. 6. Three approaches to agentification.

5 Also known as source descriptions [81,82].

K.A. Karasavvas et al. / Journal of Biomedical Informatics 37 (2004) 205–219 215
the content language of the ACL. Additionally, a
number of agents will act as wrappers, usually called

Resource Agents. We have already discussed that the

ACL could be used as the CQL, which is convenient but

not restrictive—any CQL could be used.

3.1. Distribution, autonomy, and heterogeneity

Agents have been designed with the intention of in-
formation exchange between data sources. Sharing in-

formation is a major part of system integration, and

thus agents naturally cover the fundamental aspects of

integration (discussed in Section 1.1).

Distribution. A MAS is naturally distributed. Multi-

agent systems offer location transparency by providing

facilities for service discovery and brokering. In addi-

tion, a high-level communication language enables
flexible and advanced communication between distrib-

uted agents.

Autonomy. Agents are designed with the assumption

that software entities are autonomous. Moreover, FI-

PA’s interoperability standardisation efforts will ensure

communication between agents created from many dif-

ferent vendors, organisations, or research groups. Thus,

for example, each data source curator could create re-
source agents that ‘wrap’ their data source, enabling

other users or (integration) systems to communicate and

make use of them. That potentially solves a big part of

the sociological problem.

Heterogeneity. Agents communicate only via an

ACL. A common communication language and a

common message content language deal with technical

heterogeneity while sharing an ontology handles the
semantic differences. Of course, that does not mean that

every agent will understand all possible languages and/

or ontologies that could potentially be used. However,

here is where Ontology Agents [78] come to great use, as

they can translate between a potential language and/or

ontology a message uses and a language and/or ontol-

ogy that a particular agent understands.

3.2. Legacy systems and wrappers

There are a wide number of non-agent software

services that could be utilised by an agent system. Non-

agent systems could be made a part of an agent com-

munity if they were able to communicate using an ACL.

In effect the ACL acts as the CQL, with wrappers

translating from the ACL to the local query language
(or any other kind of interface) and vice versa.

Fig. 6 shows three possible ways to do this—called

agentification [79] process. A Transducer is an agent that

knows how to translate requests from an agent system—

other agents—to the non-agent system’s interface and

vice versa. The advantage of this method is that we do

not need access to code and only the communication
interface of the non-agent system needs to be known. On

the other hand, to implement a Wrapper one needs

availability to code. The existing software is modified by

adding code to wrap the existing interface with a new
one which can communicate in an ACL. Note here, that

in system integration, when we use the term ‘wrapper’

we mean either the Transducer or the Wrapper ap-

proach. Finally, one could also Rewrite the non-agent

system according to an agent paradigm. That amounts

to a lot of programming work but one could potentially

enhance the system’s efficiency and capabilities.

Not surprisingly, FIPA defined an Agent Software
Integration specification [80] which is concerned with

how agents can connect to and make use of external

software systems, that is systems that are external to and

independent of an agents execution model—the Trans-

ducer approach to wrapping. However, nothing in the

FIPA specifications prohibit anyone to actually imple-

ment an agent that makes use of the Wrapper approach;

assuming access to code is provided, as long as it is
otherwise a FIPA-compliant agent. In agent terminol-

ogy, wrappers are usually called Resource Agents

(RAs).

3.3. Adding data sources

In accordance with FIPA specifications all (non-

agent) software systems (data sources) should be de-
scribed by software descriptions5 [80] which list the

properties of the software system.

According to the ‘Agent Software Integration Model’

[80] FIPA supports another agent role: an agent that

brokers a set of software descriptions to interested

agents. New data sources can be added dynamically to

the system just by providing a software description for

the resource to the request broker. Subsequently, any

216 K.A. Karasavvas et al. / Journal of Biomedical Informatics 37 (2004) 205–219
agents that require a service can query the request
broker to get a list of the available agents.

3.4. Bioinformatics integration and agents

Throughout this paper we have discussed why agent

technology is appropriate for the complex integration

systems, particularly in bioinformatics. In summary:

• The layered approach of an ACL provides a flexible
common medium to represent knowledge among

agents.

• The ACL and the ontologies deal with the technical

and semantic heterogeneities, respectively.

• RAs can wrap data sources. In addition using the

FIPA ‘Agent Software Integration’ specification [80]

new data sources can be added dynamically to the

system.
• The adoption of agent (FIPA) standards help in mak-

ing the first steps towards solving the sociological

problem.

• The most popular multi-agent planning technique,

task sharing, is almost identical to integration using

mediation, and thus they could easily be combined.

• Adjustable Autonomy provides a potential solution

to the problem of the confidence of the results in bio-
informatics integration.

• Bioinformatics integration systems are complex dis-

tributed systems, which makes the use of agent tech-

nology a very good choice [40].

3.5. Agents, web services, and the grid

Fundamentally agent technology represents a soft-
ware engineering paradigm. It provides a way to think

of a system abstractly and enables designs were the basic

concepts are expressed in terms of autonomous software

entities, called agents. We can thus say that any software

component exhibiting autonomous behaviour and able

to communicate with its peers in a high-level semanti-

cally defined language is an agent. Of course there are so

many parameters to be considered in the above state-
ment—concerning efficiency, language expressivity,

agent discovery, etc.—that significant standardisation

efforts have been under way for many years now. After

much research and testing, FIPA, the most prominent

agent standardisation body, proposed the first standards

in December 2002.

Meanwhile, another significant step towards the

evolution of distributed component computing was
made with the appearance of Web Services or more re-

cently Semantic Web Services. Built on established

technologies (HTML and XML) and on an unparall-

elled applications-, data-, and user-base, the Internet,

Web Services have become wide-spread in a short period

of time. This is driven by the need for acquiring com-

putational services with similar ease to acquiring data
from a web page. Web Services evolution can be related
to agent technology. That becomes more clear when we

examine the key concerns of Web Services: structured

semantic data (XML, RDF, and XSD), service de-

scription (WSDL), communication protocol (SOAP),

and a public service registry (UDDI). Finally, Web

Services are also well supported by the standardisation

efforts of the World Wide Web Consortium (W3C).

Because of these similarities many of the concepts
from the two technologies have started to converge.

Making Web Services autonomous and able to reason to

accomplish their goals makes Web Services more like

agents and rendering the latter widely available to the

public, via the Internet, makes agents more like Web

Services.

Similarly, Grid technology has a lot to gain from the

high-level abstractions that the agent paradigm has to
offer; use of agent protocols, negotiation, etc. For ex-

ample, in myGrid, agents have been suggested to deal

with personalisation issues such as acting on behalf of

the user to automate system configuration and quality of

service negotiation between a service publisher and a

consumer [83].

Although we cannot predict with certainty the evo-

lution/merging of these technologies, we believe that
they can complement each other. All three technologies

provide service-oriented functionality, which implies

similarities (e.g., they all provide brokering facilities),

but each one can contribute its more unique attributes:

• grid technology offers a large-scale distributed infra-

structure,

• web technology provides formatting standards to rep-

resent data and knowledge, and
• agent technology offers autonomy and advanced

communication between peers (e.g., protocols, nego-

tiation, and personalisation), bridging the three tech-

nologies.

Consider an example, where software modules on a

Grid exchange messages in an ACL, in which the con-

tent is expressed in RDF. One could imagine the inte-

gration potential made possible by combining these
technologies. In many aspects, web services, grid, and

agent technologies complement each other. However,

currently only agent technology is self-sufficient enough

to provide the advanced integration facilities mentioned

in this paper on its own.

Agents are situated in a flexible and scalable distrib-

uted environment (Agent Platform [84]). They can rep-

resent data and knowledge in a variety of formatting
standards including SL, KIF, XML, and RDF. Agents

were designed with knowledge-sharing in mind and

provide a common communication layer necessary for

system integration. Moreover, they are good at ad-

dressing changes dynamically (e.g., new resources, dif-

ferent resource functionality, etc.), which is an

important asset for an integration system applied in the

K.A. Karasavvas et al. / Journal of Biomedical Informatics 37 (2004) 205–219 217
ever-changing biology domain. In addition, access to,
interfacing with, and configuration of an agent system is

very flexible; adjustable autonomy permits the user to

decide when the system will act autonomously (auto-

matically) or when according to user input. Further-

more, FIPA’s standardisation efforts allow for the

interoperability of agents developed from different or-

ganisations or vendors. That greatly increases the au-

tonomy of the data sources, enabling their respective
curators to retain total control of the resource’s deci-

sions, while at the same time offering a standardised

public interface via an agent. A mutli-agent integration

system demonstrating the above features is InfoSleuth

[41].
4. Conclusions

Biology is a knowledge-intensive science and a large
number of data sources are publicly available. Data

sources are integrated to enable higher-level questions to

be answered by combining their data. Integration is a

complex task aiming to provide a unified view of the

underlying resources, while eliminating potential tech-

nical and semantic heterogeneity. The mediation ap-

proach to integration is widely used and most

bioinformatics integration systems make use—in
different degree—of it.

Agent technology is a multi-disciplinary research field

combining work from distributed systems, AI, and so-

cial (e.g., agent organisations and communication) and

economic (e.g., auction protocols) sciences. Ever since

its conception, its goal has been to develop techniques,

methodologies, and software tools for knowledge shar-

ing and reuse. Knowledge sharing is fundamental to
integrating heterogeneous data sources, and as such,

agent technology has much to offer to system integra-

tion. This becomes clearer after a detailed examination

of agent properties and their usefulness for coping with

bioinformatics integration challenges.
References

[1] Setubar J, Meidanis J. Introduction to computational biology.

Brooks/Cole Publishing Company; 1997.

[2] Stein LP. Integrating biological databases. Nat Rev Gen

2003;4:337–45.

[3] Karp PD, Paley S, Zhu J. Database verification studies of SWISS-

PROT and GenBank. Bioinformatics 2001;17(6):526–32.

[4] Attwood TK, Smith DJP. Introduction to bioinformatics. Addi-

son Wesley Longman Education; 1999.

[5] Hasselbring W. Information system integration. Commun ACM

2000;43(6):33–8.

[6] Sheth A, Larson J. Federated database systems for managing

distributed, heterogeneous, and autonomous databases. ACM

Comput Surv 1990;22(3).
[7] Litwin W, Mark L, Roussopoulos N. Interoperability of

multiple autonomous databases. ACM Comput Surv 1990;22(3):

267–93.

[8] El-Khatib HT, Williams MH, MacKinnon LM, Marwick DH. A

framework and test-suite for assessing approaches to resolving

heterogeneity in distributed databases. Inf Software Technol

2000;42:505–15.

[9] Sujansky W. Heterogeneous database integration in biomedicine.

J Biomed Inform 2001;34:285–98.

[10] Hull R. Managing semantic heterogeneity in databases: a theo-

retical perspective. In: Proceedings of the Sixteenth ACM SIG-

ACT-SIGMOD-SIGART Symposium on Principles of Database

Systems. ACM Press; 1997. p. 51–61.

[11] Hakimpour F, Geppert, A. Resolving semantic heterogeneity in

schema integration: an ontology based approach. In: Proceedings

of the International Conference on Formal Ontology in Informa-

tion Systems. ACM Press; 2001. p. 297–308.

[12] Harkey D, Orfali R. Client/server programming with Java and

CORBA. New York: John Wiley; 1997.

[13] Davidson S, Overton C, Buneman P. Challenges in integrating

biological data sources. J Comput Biol 1995;2(4).

[14] Gray PMD, Kemp GJL. Federated database technology for data

integration—lessons from bioinformatics. In: Koslow SH, Huerta

MF, editors. Electronic collaboration in science: progress in

neuroinformatics, vol. 2. London: Lawrence Erlbaum Associates

Inc; 2000. p. 45–72.

[15] Wiederhold G. Mediators in the architecture of future informa-

tion systems. IEEE Comput 1992;21(3):38–50.

[16] Domenig R, Dittrich K. An overview and classification of

mediated query systems. SIGMOD Rec 1999;28(3):63–72.

[17] Davidson SB, Overton C, Tannen V. BioKleisli: a digital library

for biomedical researchers. Int J Digit Libr 1997;1(1).

[18] Buneman P, Libkin L, Suciu D, Tannen V, Wong L. Compre-

hension syntax. ACM SIGMOD Rec 1994;23(1):87–96.

[19] Goble C et al. Transparent access to multiple bioinformatics

information sources. IBM Syst J 2001;40(2).

[20] Rector AL, Bechhofer S, Goble CA, Horrocks I, Nowlan WA,

Solomon WD. The GALEN modelling language for medical

terminology. AI Med 1996.

[21] Borgida A. Description logics in data management. IEEE Trans

Knowl Data Eng 1995;7(5):671–82.

[22] K2. Available from: http://db.cis.upenn.edu/K2/index.html.

[23] Cattell RGG, Barry D, editors. The object database standard:

ODMG 20. Morgan Kaufmann; 1997.

[24] Markowitz VM, Chen IA, Kosky AS, Szeto E. OPM: object-

protocol model data management tools’97. In: Letovsky SI,

editor. Bioinformatics databases and systems. Dordrecht: Kluwer

Academic Publishers; 1999.

[25] Kemp GJL, Angelopoulos N, Gray PMD. Architecture of a

mediator for a bioinformatics database federation. IEEE Trans

Inf Technol Biomed 2002;6(2).

[26] Carter P, Coupaye T, Kreil DP, Etzold T. SRS: analyzing and

using data from heterogenous textual databanks. In: Letovsky SI,

editor. Bioinformatics databases and systems. Dordrecht: Kluwer

Academic Publishers; 1999.

[27] Ritter O, Kocab P, Senger M, Wolf D, Suhai S. Prototype

implementation of the integrated genomic database. Comput

Biomed Res 1994;27(2):97–115.

[28] Haas LM, Schwarz PM, Kodali P, Kotlar E, Rice JE, Swope WC.

DiscoveryLink: a system for integrated access to life sciences data

sources. IBM Syst J (Deep computing for the life sciences)

2001;40(2).

[29] Carey M, Haas L, et al. Towards heterogeneous multimedia

information systems: the garlic approach. In: Research issues in

data engineering. IEEE Computer Society Press; 1995.

[30] Achard F, Vaysseix G, Barillot E. XML, bioinformatics and data

integration. Bioinformatics 2001;17(2):115–25.

http://db.cis.upenn.edu/K2/index.html

218 K.A. Karasavvas et al. / Journal of Biomedical Informatics 37 (2004) 205–219
[31] Noy NF, McGuinness DL. Ontology Development 101: A Guide

to Creating Your First Ontology. Technical Report KSL 01-05,

Stanford University; 2001.

[32] Gruber T. Toward Pinciples for the Design of Ontologies Used for

Knowledge Sharing. Technical Report KSL 93-04, Stanford

University; 1993.

[33] Foster I, Kesselman C, Tuecke S. The anatomy of the grid:

enabling scalable virtual organisations. Int J Supercomput Appl

2001;15(3).

[34] Foster I, Kesselman C, Nick J, Tuecke S. The physiology of the

grid: an open grid services architecture for distributed systems

integration 2002. Available from: http://www.globus.org/ogsa/.

[35] Wilkinson MD, Links M. BioMOBY: an open-source biological

web services proposal. Brief Bioinform 2003;3(4):331–41.

[36] MyGRID. Available from http://www.mygrid.org.uk/.

[37] Baker PG et al. An ontology for bioinformatics applications.

Bioinformatics 1999;15:510–20.

[38] Stevens R et al. Building a bioinformatics ontology using oil.

IEEE Trans Inf Technol Biomed 2002;6(2):135–41.

[39] Ashburner M et al. Gene ontology: tool for the unification of

biology. Nat Genet 2000;25:25–9.

[40] Jennings N. An agent-based approach for building complex

software systems. Commun ACM 2001;44(4):35–41.

[41] Bayardo R, Bohrer W, Brice R, Cichocki A, Fowler J, Helal A,

et al. Infosleuth: agent-based semantic integration of information

in open and dynamic environments. In: ACM SIGMOD Interna-

tional Conference on Management of Data. ACL Press; 1997.

[42] RETSINA. Available from: www-2.cs.cmu.edu/~softagents/retsi-

na_agent_arch.html.

[43] Garcia-Molina H, Papakonstantinou Y, Quass D, Rajaraman A,

Sagiv Y, Ullman J, et al. The TSIMMIS approach to mediation:

data models and languages. In: Next generation information

technologies and systems. 1995.

[44] Bryson K, Luck M, Joy M, Jones D. Applying agents to

bioinformatics in GeneWeaver. In: Cooperative information

agents IV. Lecture notes in artificial intelligence, vol. 1860. 2000.

p. 60–71.

[45] Bryson K, Luck M, Joy M, Jones D, Nicholas P, Bessieres P, et al.

From geneweaver to agmial. In: Network tools and applications

in biology—agents in bioinformatics. 2000.

[46] Decker K, Zheng X, Schmidt C. A multi-agent system for

automated genomic annotation. In: Proceedings of the Fifth

International Conference on Autonomous Agents. 2001.

[47] Mea VD. Agents acting and moving in healthcare scenario—a

paradigm for telemedical collaboration. IEEE Trans Inf Technol

Biomed 2001;5(1):10–3.

[48] Bryson K, Michael Luck, Mike Joy, Jones DT. Agent interaction

for bioinformatics data management. Appl Artif Intell

2001;15(10):917–47.

[49] Salim Khan, Ravi Makkena, Foster McGeary, Keith Decker,

William Gillis, Carl Schmidt, A multi-agent system for the

quantitative simulation of biological networks. In: Proceedings

of the Second International Joint Conference on Autonomous

Agents and Multiagent Systems. ACM Press; 2003. p. 385–392.

[50] Karasavvas K, Burger A, Baldock RA. A multi-agent bioinfor-

matics integration system with adjustable autonomy. In: PRICAI,

Lecture Notes in Computer Science, vol. 2417. Springer; 2002. p.

492–501.

[51] Imai T, Matsuda H, Sekihara T, Nakanishi M, Hashimoto A.

Implementing and integrated system for heterogeneous molecular

biology databases with intelligent agents. In: Proceedings of the

IEEE Pacific Rim Conference on Communications, Computers

and Signal Processing. 1997. p. 807–810.

[52] Franklin S, Graesser A. Is it an agent, or just a program?: a

taxonomy for autonomous agents. In: Third International Work-

shop on Agent Theories, Architectures, and Languages. Springer-

Verlag; 1996.
[53] Nwana H. Software agents: an overview. Knowl Eng Rev

1996;11(3):205–44.

[54] Ringwald M, Eppig JT, Begley DA, Corradi JP, McCright IJ,

Hayamizu TF, Hill DP, Kadin JA, Richardson JE. The mouse

gene expression database (GXD). Nucleic Acids Res 2001;29:98–

101.

[55] Davidson D, Bard J, Brune R, Burger A, Debreuil C, Hill W,

Kaufman M, Quinn J, Stark M, Baldock R. The mouse atlas and

graphical gene-expression database. Semin Cell Dev Biol

1997;8(5):509–17.

[56] Yule G. The study of language. Cambridge: Cambridge University

Press; 1996.

[57] Austin J. How to do things with words. Cambridge, MA: Harvard

University Press; 1962.

[58] Searle J. Speech acts: an essay in the philosophy of language. New

York: Cambridge University Press; 1970.

[59] Foundation for Intelligent Physical Agents, Geneva, Switzerland.

FIPA 97 Specification, Version 2.0, Part 2, Agent Communication

Language. 1997.

[60] Finin T, Weber J, Wiederhold G, Genesereth M, Fritzson R,

McGuire J, et al. Specification of the KQML agent communica-

tion language. Technical Report, DARPA knowledge sharing

initiative, External Interfaces Working Group; 1993.

[61] FIPA SL Content Language Specification 2002. Availbale from:

www.fipa.org/specs/fipa00008.

[62] Genesereth M, Fikes R. Knowledge Interchange Format, Version

3.0 Reference Manual. Technical Report 92-1. Computer Science

Department. Stanford University; 1992.

[63] Sterling L, Shapiro E. The art of prolog. Cambridge, MA: MIT

Press; 1986.

[64] Patil R, Fikes R, Patel-Schneider P, McKay D, Finin T, Gruber T,

et al. TheDARPA knowledge sharing effort: progress report. In:

Huhns M, Singh M, editors. Readings in agents. Morgan

Kaufmann; 1997. p. 234–54 [chapter 3].

[65] Gruber T. Ontolingua: a mechanism to support portable ontol-

ogies. Technical Report KSL 91-66. Stanford University; 1992.

[66] Foundation for Intelligent and Physical Agents 1996. Available

from: www.fipa.org.

[67] Weld D. An introduction to least commitment planning. AI Mag

1994;15(4):27–61.

[68] Weld D. Recent advances in AI planning. AI Mag 1999;20(2):93–

123.

[69] Durfee E. Distributed problem solving and planning. In: Weiss G,

editor. Multiagent systems: a modern approach to distributed

artificial intelligence. Cambridge, MA: MIT Press; 2000. p. 121–64

[chapter 3].

[70] Ferber J. Multi-agent systems: an introduction to distributed

artificial intelligence. Reading, MA: Addison-Wesley; 1999.

[71] Cesta A, D’Aloisi D, Collia M. Adjusting autonomy of agent

systems. In: AAAI Spring Symposium on Agents with Adjustable

Autonomy. 1999. p. 17–24.

[72] American Association for Artificial Intelligence. AAAI Spring

Symposium on Agents with Adjustable Autonomy, March 1999.

[73] Scerri P, Pynadath DV, Tambe M. Why the elf acted autono-

mously: towards a theory of adjustable autonomy. In: Proceedings

of the First International Joint Conference on Autonomous

Agents and Multiagent Systems, 2002.

[74] Burstein M, Ferguson G, Allen J. Integrating agent-based mixed-

initiative control with an existing multi-agent planning system.

Computer Science Department 729, The University of Rochester,

2000.

[75] Parunak H. Industrial and practical applications of dai. In: Weiss

G, editor. Multiagent systems: a modern approach to distributed

artificial intelligence. Cambridge, MA: MIT Press; 2000. p. 377–

421 [chapter 9].

[76] Booch G. Object-oriented analysis and design with applications.

Reading, MA: Addison Wesley; 1994.

http://www.globus.org/ogsa/
http://www.mygrid.ork.uk/
http://www-2.cs.cmu.edu/~softagents/retsina_agent_arch.html
http://www-2.cs.cmu.edu/~softagents/retsina_agent_arch.html
http://www.fipa.org/specs/fipa00008
http://www.fipa.org

K.A. Karasavvas et al. / Journal of Biomedical Informatics 37 (2004) 205–219 219
[77] Wooldridge M. Intelligent agents. In: Weiss G, editor. Multiagent

systems: a modern approach to distributed artificial intelligence.

Cambridge, MA: MIT Press; 2000. p. 27–77 [chapter 1].

[78] FIPA Ontology Service Specification 2001. Available from:

www.fipa.org/specs/fipa00086.

[79] Genesereth MR, Ketchpel SP. Software agents. Commun ACM

1994;37(7):48–53.

[80] FIPA Agent Software Integration Specification 2001. Available

from: www.fipa.org/specs/fipa00079.

[81] Levy A, Rajaraman A, Ordille J. Querying heterogeneous

information sources using source descriptions. In: Twenty Second
International Conference on Very Large Data Bases. Morgan

Kaufmann; 1996. p. 251–262.

[82] Vassalos V, Papakonstantinou Y. Describing and using query

capabilities of heterogeneous sources. In: Twenty Third Interna-

tional Conference on Very Large Data Bases. Morgan Kaufmann;

1997. p. 256–265.

[83] Moreau L, et al. On the use of agents in a bioinformatics grid. In:

Proceedings of the Third International Symposium on Cluster

Computing and the Grid. 2003.

[84] FIPA Agent Management Specification 2002. Available from:

www.fipa.org/specs/fipa00023.

ftp://www.fipa.org/specs/fipa00086
http://www.fipa.org/specs/fipa00079
http://www.fipa.org/specs/fipa00023

	Bioinformatics integration and agent technology
	Bioinformatics system integration
	Fundamental aspects of integration
	Heterogeneity
	Federated systems
	Legacy systems and wrappers
	Mediation and bioinformatics integration systems
	Confidence in results’ quality
	Semantic web services, semantic grid, and integration
	Investigating agent technology

	Agent technology
	Agent communication languages
	ACLs and bioinformatics integration
	KSE and FIPA
	Standardisation and bioinformatics integration
	Planning in multi-agent systems
	Planning and integration
	Adjustable autonomy
	Adjustable transparency
	Agents and software engineering
	Bioinformatics and complex distributed systems

	Agents and integration
	Distribution, autonomy, and heterogeneity
	Legacy systems and wrappers
	Adding data sources
	Bioinformatics integration and agents
	Agents, web services, and the grid

	Conclusions
	References

